THERMODYNAMIC PROPERTIES OF HELIUM-3 AND HELIUM-4 23

We have also compared the Debye temperatures for different molar volumes as a function of the reduced temperature T/θ_D . This comparison is made in table 11 where values of $\theta_D(V)/\theta_D(V_0)$ are listed as functions of T/θ_D (we chose $V_0 = 12.57 \text{ cm}^3/\text{mole}$ for ³He and

FIGURE 15. The Debye temperatures of solid ⁴He and solid ³He as a function of volume at the same reduced temperature $(\theta_p/T = 18)$. The open points are directly measured values; the closed points are extrapolated from a slightly higher reduced temperature.

Table 11. $\theta_D(V)/\theta_D(V_0)$ at different reduced temperatures for solid ³He AND SOLID ⁴He

	(Vo mas	Deen taken a	S 12.07 CIII-	111016 101 1	ic and II.	II CIII IIIOIC	101 110)	
$V(\text{cm}^3) = 13.33$		13.56	14.16	14.98	15.72	16.71	16.87	17.02
θ/T				³ He				
18.0	0.881	0.846	0.769	0.672	0.597			
15.2	0.874	0.844	0.767	0.671	0.601	0.514	0.504	0.490
12.9	0.875	0.841	0.761	0.668	0.596	0.513	0.503	0.491
11.0	0.872	0.837	0.761	0.667	0.594	0.509	0.499	0.488
9.7	0.874	0.840	0.758	0.664	0.590	0.501	0.493	0.480
8.25	0.874	0.839	0.756	0.656			-	
		$V(\mathrm{cm}^3) = 12.22$		14.55		16.25		
		θT		⁴ He				
		18.0	0.919	0	.620			
		12.0	0.923	0	$\cdot 624$	0.474		
		9.0	0.920	0	·614	0.462		

(V, has been taken as 12:57 cm³ mole for ³He and 11.77 cm³ mole for ⁴He)

 $V_0 = 11.77 \text{ cm}^3/\text{mole}$ for ⁴He). There is clearly a systematic change in this ratio as the melting point is approached. This might be due, for example, either to anharmonic effects In the lattice vibrations or to the formation of vacancies in the lattice. Apart from this